E-Clouds / TMCI : MD Goals and Results, Data Analysis and Simulations, Feedback Models and System Implications

C. H. Rivetta¹
LARP Ecloud / TMCI Contributors:

J. Cesaratto ¹, J. D. Fox¹, M. Pivi¹, O. Turgut¹, S. Uemuda¹,
W. Hofle², U. Wehrle², K. Li ³, H. Bartosik ³ G. Rumolo³,
M. Furman⁴,R. Secondo⁴, J.-L. Vay⁴

 1 Advanced Accelerator Research Department, SLAC 2 BE-RF Group - CERN, 3 BE-ABP-ICE Group - CERN 4 LBNL

Introduction

MDs: Goals - Results

- 3 Simulations Modeling
- Conclusions

Electron Cloud / TMCI Project - CM18

- CM 16 Report:
 - Progress in macro-particles simulation codes: Real Feedback Models -Statical errors.
 - MD preparation: Simulations Estimations.
 - Further analysis of MD data E-clouds Measurements (y-displ.)
 - Integration of those results to modeling and identification.
- CM 17 Report:
 - Preliminary Results of Summer MDs at SPS
- CM 18 Report:
 - MDs: Goals.
 - Hardware installed.
 - MD Results .
 - Simulation Modeling.

MD Goals - Results

MD Goals

- Install Hardware in the SPS tunnel/Faraday cage and be able to drive the beam (Single Bunch)
- Test the system to drive as many bunch modes as possible
- Evaluate a method to time properly the kicker signal with the bunch.
- Estimate the momentum kick for different frequencies across the bunch.
- Test appropriated signal to be able to identify the bunch dynamics,
- Analyze options to transform the present hardware / software in a beam-machine diagnostic tool.

MD Goals - Results

MD Hardware

MD Goals - Results

Excitation System - Main Features

- Synchronize excitation signal with a selected bunch in the machine.
- 3.2 4GS/s programable unit that allows generating arbitrary signals in time (turns) and across the bunch (z-axis).
- Allows driving the bunch with an arbitrary kick signal.
- Able to follow at some level the bunch during acceleration.

MD Goals - Results

Excitation System - Signal Examples

- Synchronize excitation signal with selected with selected bunch in the machine.
- 3.4-4GS/s programable unit that allow generate arbitrary signals time (turns) and across the bunch (z-axis).

MD Goals - Results

MD Results - Bunch multimode motions

- We drove the beam using a composite AM signal that drives head-tail motion across the bunch.
 - $M(z, t_0) = Asin(\frac{2\pi}{T_b}z)f(t_0), \qquad z \in [0T_b), T_b = 5ns.$
- Along the turns we swept the fractional frequency FracFreq(t) of the signal 0.175 to 0.185 in 15K turns
 - $M(z,t) = A sin(\frac{2\pi}{T_h}z) sin(\theta(t))$ $\theta(t) = 2\pi \int FracFreq(t) dt$
- The frac. betatron tune of the machine was $f_{\beta}=0.181$, the frac. synchrotron tune was $f_{S}\simeq0.004$
- The equalized SIGMA and DELTA (dipole) signals for 20K turns are ...(movies)

◆ロト ◆部 → ◆注 > ◆注 > ・注 ・ から()

MD Goals - Results

MD Results - Bunch multimode motions

• Spectrum slice 123 - Delta SIGNAL.

C. H. Rivetta CM18 - LARP Meeting May 7, 2012 9

MD Goals - Results

MD Results - Bunch multimode motions

• Spectrum slice 123 - Turns 2653 and 6997 .

MD Goals - Results

MD Results - Bunch multimode motions

• Spectrum slice 123 - Turns 9893 and 13694 .

MD Goals - Results

MD Results - Bunch multimode motions

• Spectrum slice 123 - Turns 16771 and 18762.

MD Goals - Results

Kicker Signal - Bunch Timming

- An important outcome of these studies is the design of a technique to time the kicker signal relative to the bunch position.
- It is important to drive efficiently the bunch and it will be crucial for next the step related to the feedback control of intra-bunch motions.
- Excitation system has two time adjustments: Coarse:5ns steps, Fine:10ps.
- Tests of the timing technique were conducted using different signals

MD Goals - Results

Kicker Signal - Bunch Timing

- Preliminary results of timing study based on head-tail motion of the bunch
- RMS of the bunch vertical motion for different delays

MD Goals - Results

Other tests

- Using different signals, we tried to drive different vertical modes of the bunch motion
- In particular we used signals at constant frequency to study the kicker strength
- We drove the beam with 'filtered random' signals to test possible identification techniques to characterize the bunch dynamics.
- Direct these studies (driving the beam with particular signals) to define techniques to parameterize the beam dynamics and to measure the machine impedance.

◆ロ → ◆団 → ◆豆 → ◆豆 → りへで

Macro - Particle Simulation - Modeling

- Realistic feedback channels have been in CMAD, Head-Tail, Warp simulation codes.
- We are testing the effect of the kicker bandwidth in the bunch stabilization due E-clouds.
- Studies to define the kicker+amplifier power have shown that low-levels are required to stabilize the beam dynamics due to E-cloud interaction.

Conclusions

Conclusions - Further plans

- We conducted three MDs, driving the proton bunch...
- Test different ways of driving the bunch and developing analysis techniques to measure kicker strength, and bunch dynamics.
- Special attention to techniques to time the kicker signal respect to the bunch, in order to progress toward next step: Feedback channel to demonstrate intrabunch control and stabilization.
- Introduced realistic models for the feedback system in macro-particle simulation codes (C-MAD, WARP, HT Head-tail) We are in the process of validating the simulations code to represent the bunch instabilities induced by E-clouds and Transverse Mode Coupling.
- Defining identification techniques to extract reduced dynamical model of the proton bunch - Extend to techniques based on periodic excitation signals. Use data from the MDs

Thanks to the audience for your attention!!!,Questions?

